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Abstract—Point-of-interest (POI) recommendation has drawn much attention with the widespread popularity of location-based social
networks (LBSNs). Previous works define long- and short-term trajectories via long short-term memory (LSTM) to capture user’s stable
and current preference, and incorporate context factors to improve recommendation effectiveness. However, these factors have
different impacts on POl recommendation, and meanwhile, they are mutually influenced. Existing studies either model all the factors
separately, or feed them into the same LSTM model, which are less meticulous for modeling the LBSNs trajectories. To address such
issues, we revisit the long- and short-term preference learning for next POl recommendation by presenting a novel framework that can
model both POI level and semantic level check-in trajectories. We develop a hierarchical LSTM to learn the two-level representations
and consider the interplay of the two-level features by adding factors to the gates of LSTMSs for each trajectory. We further construct a

semantic filter to improve the recommendation efficacy. Experimental results using two real-world check-in datasets indicate that the
proposed framework outperforms four state-of-the-art baselines regarding two commonly used metrics.

Index Terms—POI recommendation, location-based social networks, hierarchical LSTM, long- and short-term preference.

1 INTRODUCTION

Nowadays, location-based social networks (LBSNs) [1]-[3]
have received much attention owing to the popularity of
smart mobile devices and the advancement of location
acquisition technology. Millions of users have registered in
LBSNSs services like Facebook or Foursquare. Users can post
their check-ins and share their life experience in the real-
world via LBSNs. In order to improve the experience for
users, next point-of-interest (POI) recommendation [4]-[6]
that aims to recommend next potentially attractive POIs to
users has gained considerable research interests, as it can
benefit not only users but also advertising agencies with an
effective way to launch advertisements.

To perform the next POI recommendation, historical
check-in trajectories, which can dynamically reflect user’s
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stable preference, are often adopted to capture personal gen-
eral taste. Meanwhile, people make their next visits based on
their current locations to a great extent. Therefore, previous
works define short-term and long-term check-in trajectories
to capture user’s current and stable preference, where long
short-term memory (LSTM) is usually accompanied by the
long- and short-term trajectory modeling [7]-[13].
However, modeling the check-in trajectory is challenging
for data with heterogeneity and sparsity. To improve the
recommendation effectiveness, many efforts [9]-[13] focus
on incorporating context information like spatio-temporal
contextual knowledge for POI recommendation and have
gained promising results. Specifically, some studies argue
that context factors (e.g., category, check-in time, geograph-
ical location) are useful for next POI recommendation and
they input all factors into the same LSTM model. Recent
studies [14]-[18] take a more fine-grained approach to deal
with these factors and they explore the impact of each
specific factor, and different impacts of different factors have
been demonstrated on POI recommendation [10], [17].
Nevertheless, these factors are also mutually influenced.
We notice that some factors are geographically relevant,
while some are semantically related. To validate this point,
we randomly select a user from the real-world Foursquare
NYC dataset and figure out the check-in distribution of
different POIs with the same category that the user visits
the most. Fig. 1 shows the check-in distribution of the same
user at two coffee shops/bars. It can be observed that the
check-in distribution for two coffee shops are similar, so for
the bars. User prefers visiting coffee shops late at night and
visiting bars at noon and night with no regard to physical
positions. This indicates that the user may like visiting
different POIs with the same category at a similar time slot.
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We thus call the specific POIs geographically relevant while
the category and check-in time semantically relevant. They
have the holistic effect on the next visit in two levels, and
respectively reflect the geographically constrained charac-
teristics and the unrestricted actual user intent.

In addition, the interplay between POI level and seman-
tic level trajectories is non-negligible, as the next POI visit
is affected by the semantic level intent and the intent is
constrained by the geographical position, and meanwhile
the semantic level features also have an impact on POI level
learning. For example, a user may prefer a bar after shop-
ping on weekends; he may not change the preference even if
he goes to another shopping mall, and another bar around is
the most likely to be visited next. However, existing studies
either model all the factors separately, or feed all the factors
into the same LSTM model and they are obviously not that
meticulous for modeling LBSNs trajectories.

Against this background, in this paper, we revisit the
long- and short-term preference learning for next POI rec-
ommendation by presenting a novel Hierarchical LSTM
with Long- and Short-term preference framework (HiLS)
that can model both POI level and semantic level features.
The influencing factors are expressed as embeddings to
transform the sparse feature into dense representations that
are further input into HiLS. To consider the interplay of the
POI and semantic level features, we design a hierarchical
LSTM to guide the learning process. By feeding the semantic
level features into the POI level in each step, the POI level
learning will be affected by the semantic level features,
which will be updated in turn by predicting the next POL
We make the best of semantic level preference to predict the
user’s next location. With the semantic level features, which
reflect the user intent, we further construct a semantic filter
to preliminarily filter out POIs that are in consist with user
intent before recommendation. In this way, the semantic
level features will be made better use of to help improve
the effectiveness of the final recommendation.

Our major contributions are summarized as follows:

e We propose a novel framework which can learn the
long- and short-term preference for more effective
next POI recommendation.

e We design a hierarchical LSTM, coined as HiLSTM,
to learn both the semantic level and POI level rep-
resentations for trajectories, and model the interplay
of the two levels by feeding the semantic factor into
LSTM gates.

o We utilize the short-term trajectory to capture the
check-in sequential correlation with the hierarchical
LSTM, and learn the long-term preference by explor-
ing the correlation between historical and current
trajectories with attention mechanism.

e We conduct extensive experiments to evaluate the
performance of HiLS on two real-world datasets.
The results show the effectiveness and superiority
of HiLS by comparing with state-of-the-art baselines.
The code of HiLS has been released for reproducibil-
ity purposes'.

1. https:/ /www.dropbox.com/s/q0ggpirmg0Okbtdp /HiLS-Code.
zip?dl=0
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Fig. 1: Check-in time distribution on coffee shops/bars #1
and #2, which show a similar pattern, while the check-in
distribution of the coffee shop is different from that of the
bar, indicating that the user may like visiting different POIs
with the same category at similar time slot.

2 PRELIMINARY
2.1 Empirical Data Analysis

We first conduct an empirical data analysis to reveal the
influence of factors on user mobility, using two datasets
collected by [19] from Foursquare between Apr. 2012 and
Jan. 2014. The detailed statistics of the datasets are shown
in Table 1. Different from recommendation on the web,
POI recommendation is related to the physical location and
the check-ins are determined by a variety of influencing
factors. We therefore preliminarily analyze the impact of
POI, category, timestamp and geographical distance on the
next visit.

POI influence. We analyze the check-in pattern on POIs
from two perspectives. First, we analyze the ratio of new
POIs in all collected records for each user. As shown in
Fig. 2(a), in NYC dataset, for 50% users, nearly half of the
POIs are the first visits; similar trend can be observed in
TKY dataset as in Fig. 2(c). This may be because users are
enthusiastic in new POls or they are bored with reporting
recurring visits. So, it reminds us to consider the fact that
users may frequently check in at unvisited POIs. Second,
we analyze the probability of checking in at the same POls.
As shown in Fig. 2(b) and Fig. 2(d), users are likely to check
in following the similar pattern and will check in next at the
same POI previously visited.

Category influence. We analyze the category influence in
the same way as POI influence. We can see from Fig. 2(a), for
50% users, less than 30% categories are the first visit while
nearly half for POIs. Even if recurring visits are omitted,
the data shows that users visit new locations with famil-
iar categories and they are enthusiastic enough to report
them. Users may not check in at the same POI frequently.
However, the ratio of new check-in categories is much less
than that of POls. We can see a more obvious tendency in
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Fig. 2: Cumulative distribution of POI and category influ-
ence on next POI recommendation.
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Fig. 3: Top-10 check-in categories distribution after
checking-in on restaurant.

TKY dataset as in Fig. 2(c). Besides, as shown in Fig. 2(b)
and Fig. 2(d), the ratio of checking in next at the same
category previously visited is more than at the same POL
The categories reflect more intrinsic preference, and it is
essential to learn the check-in intent other than certain POls.

Timestamp influence. Fig. 3 visualizes the check-in
probability on next POIs at different timestamps on NYC
dataset. We can observe that users are most likely to check
in at cafes, malls and restaurants after checking in at a
restaurant for lunch, while they are more likely to check
in at cafes, home and restaurants after dinner. Besides, the
check-in categories after lunch are more dispersive, which
may because people have more plentiful activities in the
afternoon than in the evening, and thus it makes more
sense to recommend a mall than a restaurant after lunch.
Apparently, people have different next check-in preference
at different time even at the same POL

Geographical distance influence. Geographical influ-
ence is an important factor that distinguishes the recommen-
dation in LBSNs from other scenarios, as the next check-in
location is constrained by the distance from one’s current
position. Fig. 4 shows the distribution of the standard de-
viation between consecutive check-ins of sub-trajectories on
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Fig. 4: The distribution of standard deviation of geographi-
cal distances for sub-trajectories.

NYC dataset. We can observe that most of sub-trajectories
have standard deviation less than 7.5km. The observation
supports that geographical distance between consecutive
visits in a sub-trajectory is restricted.

2.2 Motivation of Hierarchical LSTM

LSTM [20] is measurable as the basic unit in modeling
the specific continuous order of the POlIs resulting from a
certain chronological order between user activities. It is an
optimized variant of the famous recurrent neural network
(RNN) [21], and is able to avoid the vanishing gradient
problem by introducing the gate mechanism. The basic
LSTM consists of one cell state and three gates to control the
output and update of LSTM cell. Based on the previous cell
state and the input, LSTM first updates cell states with part
to keep and part to forget, and then generates the output
from the current cell for the next cell.
The basic update equations of LSTM as follows [20]:

iy = o(Wixy + Wyhi 1 + b;) @
Ji = o(Wrx, + Wyhy 1 + by) )
o, = oc(Wyxy + Wyhy_1 + b,) ©)]
¢ = tanh(Wyxy + Wyhy—q +b,.) 4)
g=fi0c_ 1+ 06 )

h; = o; ® tanh(¢;) (6)

where 1;, f, 0; represent the input, forget and output gates,
respectively, ¢, is the cell activation vector representing cell
state, ¢, hy and h;_; represent the input feature, hidden
output vector and the last output of cell unit, respectively,
and © is the operation of element-wise multiplication. Each
LSTM cell computes h; which incorporates the current
information and the information before time t¢. There is also
a learnable weight W to control the update.

LSTM has achieved remarkable success in sequential
prediction [23], and has been recently introduced for next
POI recommendation [7], [17], [22]. A usual practice is to
input all the influential factors into one LSTM model [7], [22]
(c.f. Fig. 5(a)), while ignoring different impacts of different
factors. The recent study [17] takes a more fine-grained
approach and explores the impact of different factors sep-
arately before concatenating their results (c.f. Fig. 5(b)). We
notice that different factors are also correlated with each
other and it is not appropriate to use separated models
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Fig. 5: (a) All factors are fed into one LSTM model [7],
[22]; and (b) different factors are fed into respective LSTM
models [17], for next POI recommendation.

to learn the inherent mutual influence. We thus propose
a hierarchical LSTM structure to learn the user preference
on semantic level and POI level while considering their
interplay by feeding the semantic features in each step to
the gates of POI level LSTM to guide the learning process.

3 PROBLEM FORMULATION

Before we formulate the problem, we first present some
notations and definitions. Formally, let the quadri-tuple
v = (t,d,c,p) denotes a check-in record of a user, which
indicates that the user visits POI p at timestamp ¢, with
the category of p as ¢, and d is the geographical distance
between the last and current POls. Since user’s movements
are periodic, directly using all the historical check-ins will
result in an undesirably long trajectory. Therefore, enlight-
ened by the existing work [24]-[26], given the raw check-ins
Tr = {v1, v, ...} of the user, we split it into multiple sub-
trajectories Tr = {Tr1, Tra..., Trr } by the time interval and
check-in consecutiveness, as in recent works [8], [11], [27],
[28], where I is the number of sub-trajectories.

As is known that the user activity for visiting POlIs
is influenced by both the general taste and the status at
present, so long- and short-term trajectories are adopted to
respectively capture user’s stable and current preference [7],
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[8], [16], [17], [22], [29]. Their formal definitions are de-
scribed as follows:

Definition 1 (Long/Short-Term Trajectory [8]). The long-
term trajectory is a sequence of historical sub-trajectories,
which is denoted as Tripng = {Tr1, Trs..., Trr—1}, while
the short-term trajectory is the user’s most recently vis-
ited sub-trajectory, i.e., Trgyorr = {Tr1 }.

The long-term trajectory is regarded as the general check-in
pattern of the user and can be used to mine the stable tastes,
and the short-term trajectory indicates the consecutiveness
influenced by the recently visited POls.

Besides the long- and short-term preference of the user,
different influential factors (e.g., category, check-in time,
geographical location) also have impacts on the next POI
recommendation [10], [14], [16], [17], as discussed in the
previous section. While these factors are normally treated
as unitary features, we are keenly aware of the disparity on
their influence. In particular, POIs are geographically rele-
vant, which mainly describe the user’s geographical con-
strained preference, while others are semantically relevant
and can reflect more on the user’s intentional preference
free from geographical constrains. We thus define the POI
level and semantic level trajectories separately, on the basis
of the sub-trajectory, to capture such preference.

Definition 2 (POI Trajectory). The POI trajectory of a user
is built on time-ordered sequence of L POIs in check-ins,
ie, Tryoi = {PvysPuys s Py}, Where L is the length of
the sub-trajectory.

Definition 3 (Semantic Trajectory). A user’s semantic tra-
jectory is composed of a semantic sequence beyond
the geographical positions in check-ins, which can be
described as Trsem = {(tv,s dvy, Coq )y oey (Bops dugsCop) )

Formally, given a user u at time ¢,, , with her current po-
sition p,, , and her historical check-in trajectory T'r, our aim
is to recommend top-k POIs Pr. = {ph.. P2, .opk. € P}
(P is the set of all POIs in the LBSNSs), such that P, is
most likely to be visited by the user at the next timestamp
ty,. In order to achieve this goal, we first learn user’s
geographically constrained preference and intentional pref-
erence as well as the interplay between them from POI
trajectory Try,; and semantic trajectory Trs.n, respectively, for
each sub-trajectory. Thereafter, we consider the long- and
short-term preference by modeling the long- and short-term
trajectories Trine and Trgerr, dependent upon the learned
POI and semantic features, before performing the final POI
recommendation.

4 HILS DESIGN
4.1 Overview of HILS

HiLS aims to learn the long- and short-term preference
from user’s POI and semantic level trajectories for next
POI recommendation. To this end, HiLS mainly involves the
following three steps (c.f. Fig. 6):

(1) Trajectory modeling with hierarchical LSTM: For
each user, we split the check-in records into multiple sub-
trajectories. Each influential factor of the check-in record
is embedded into a low-dimensional space, which retains
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preference is learned from historical sub-trajectories

the sequential relations among factors. The check-in em-
bedding, or the concatenation of factors embedding, is then
fed into a hierarchical LSTM (HiLSTM) model for learning
the sub-trajectory representation and the hidden state of
the latest check-in in both POI and semantic levels. The
structure of HILSTM is shown in the right part of Fig. 6.

(2) Long- and short-term preference learning: As shown
in the bottom left of Fig. 6, given the learned POI and
semantic representations, we next learn the long- and short-
term preference from POI and semantic levels to preserve
the general taste and the status at present. To thoroughly
learn the long-term preference, we explore the correlations
between historical and current trajectories with attention
mechanism. Meanwhile, we utilize the short-term trajectory
to capture the check-in sequential correlation with HiLSTM.

(3) Next POI recommendation: We get semantic and POI
level preference for each user by comprehensively consider-
ing the long-term and short-term trajectories in two levels.
Then, as shown in the upper left of Fig. 6, the semantic level
preference is used for constructing the semantic filter. With
the semantic filter, we are able to recommend POIs with
suitable categories, even if the user checks in at POIs that
have never been visited, and thus improving the recommen-
dation effectiveness. The POI level preference will generate
the final recommendation.

4.2 Trajectory Modeling with Hierarchical LSTM

As stated before, POI and semantic level features respec-
tively reflect actual check-in POIs and the user intent, and
they have different impacts for the next POI recommenda-
tion. Meanwhile, the interplay between POI and semantic
trajectories is also significant as the next POI visit is affected
by the semantic level intent subject to the actual geograph-
ical constraint. So, the first step of HiLS is to learn user
preference in POI level and semantic level while considering
their interplay. To this end, we design the HiLSTM to learn
the features from POI and semantic trajectories.

and long-term

4.2.1 Semantic Trajectory Modeling

The semantic trajectory modeling takes the embedding of
semantic trajectory Trs, as input. The influential factors
in semantic trajectory are inseparable as they jointly reflect
the user’s intentional preference. We use LSTM to capture
the complicated sequential correlations or long-range de-
pendencies contained in the sub-trajectory. In the hidden
layer, each hidden vector h;, is updated after receiving the
current input @3, and the last cell state hj, . In LSTM, we
have updates as follows:

1<t<L @)

®)

where LSTM(-) denotes one step pass of vector via LSTM;
e, eq, e, respectively represent the embeddings of time
slot ¢, geographical distance between the current and last
POI d, and the category c. [-] denotes the concatenation
operation of embeddings (reflected by @ in Fig. 6), and
the concatenation result x7 is fed for semantic trajectory
modeling. h; is the latest hidden state. The embeddings
of influencing factors are randomly initialized and will be
trained in the network. The representation learned from the
semantic trajectory reflects general intentional preference.

wit — [etv €4, eC]v

h?, = LSTM(x3 , hS

v vt_l)a

s
hy,

4.2.2 POI Trajectory Modeling

To model POI level trajectory, we input the embedding of
POI trajectory Tip,; into HiILSTM. The interplay between
POl level and semantic level trajectories is significant as the
next POI visit is affected by the semantic level intent, so
the key point is how to incorporate semantic intent in every
update step. To tackle this issue, we input the features of
semantic level hidden states which reflect the user intent at
the moment in each step into POI level learning. By doing
so, we can model the geographical related POI trajectories
while considering the impact of user intent. As shown in
the right part of Fig. 6, the update unit for POI trajectory
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modeling in HiLSTM is named SLSTM, which introduces
user intent into POI trajectories modeling. Formally, we
propose to add semantic factors into gates of LSTM and
the update equations for SLSTM are as follows:

Ty, = U("Vixﬂﬁﬁt + v‘/[hhgt,l + VViSF(h'fzt,l) + bl) )

fuo, = o(Wrah, + Wyhy, |+ WiF(h;, )+ by) (10)

Oy = U(ngmgt + Wahhgt,l + WosF(hfjt,J +bo) (11)

where h; | is feature representing user intent of previous
state, ), is the current input embedding of the POI trajec-
tory, hl, _ is the previous cell output hidden unit, W is the
weight matrix, b is the bias term, and F(.) is a function for
semantic factor on POI level modeling defined as:

F(h; )=T,h;

Vt—1 Vt—1

(12)

where T is the linear transition matrix with respect to the
semantic factors.
For POI trajectory modeling, we have updates as:

xb =ley], 1<t<L (13)
hf)’t = SLSTM(wa’t,hf;tiﬁhgtil), Rt =0 (14)

where SLSTM(+) denotes one step pass of vector in the POI
trajectory, e, represents the low-dimensional embedding of
POI, and Al is the latest hidden state of the current POI
trajectory. The learned features for POI trajectories reflect
the user’s geographical related check-in preference.

HiLSM consists of LSTM for semantic trajectory model-
ing and SLSTM for POI trajectory modeling, and meanwhile
considering their interplay. The status of HiLSTM at a
specific step can be represented by the hidden states h ,
h;, of cell. Considering all check-ins in a sub-trajectory,
the representations for POI and semantic trajectories are
respectively defined as:

L L
Trypoi = % > hL,, Trem = % > ki, (15)
t=1 t=1
where hf and hj, are the hidden state of each step in
sub-trajectories for POI level and semantic level features;
fr,,oi and frsem are the representations for POI and semantic
trajectories, respectively.

Overall, the whole process to learn both semantic and
POI level features while considering their interplay by
HiLSTM for each sub-trajectory is:

ﬁ’poia ’frserna h;

oL th = HiLSTM(TI’ng, Trpoi) (16)

where HiLSTM(-) denotes the learning for a sub-trajectory
in two levels. Note that the output of HILSTM includes rep-
resentations for both the latest status and the sub-trajectory.

4.3 Long and Short-Term Preference Modeling

After we obtained the POI and semantic representations,
we next learn the long- and short-term preference from POI
and semantic levels to preserve the general taste and the
status at present (c.f. Fig. 6). We learn the long-term prefer-
ence from the long-term trajectory with specially designed
attention mechanism [7], [8], [17]. Meanwhile, we utilize the
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short-term trajectory to capture the short-term preference
reflecting sequential correlation. HiLSTM learns POI and
semantic levels features for each sub-trajectory, and thus
different from existing efforts, we learn long and short-term
preference in these two levels.

4.3.1 Short-Term Preference Modeling

Given multiple sub-trajectories Tr = {Try, Tro..., Trr} of
a user, the latest check-in sub-trajectory Trsgionr = {T¥r} is
taken for learning the short-term preference. The hidden
states of LSTM in each step encode the status at the moment
of the mobility, and so we regard the latest hidden state
as the short-term preference for next mobility prediction.
Specifically, for short-term preference modeling, we get
the latest semantic level and POI level hidden states hj,
and h{, of the current sub-trajectory with HiLSTM as the
short-term preference in both levels. Besides, we also get
the trajectory representation frpo,' and f"rsgm by Eq. (15) in
these two levels. The trajectory representations are used for
the attention layer in latter long-term preference modeling.
Formally, we input Tty into the HILSTM and the learned
short-term preference for current status as follows:

P'fshort = h?vahﬁ)L (17)
fr] = frpoiI s frsem; (18)

where Prf, , represents the short-term preference in POI
level and semantic level, and Tr; represents the trajectory

representation of the latest trajectories in two levels.

4.3.2 Long-Term Preference Modeling

The long-term preference modeling intends to mine the
periodic trends captured from historical sub-trajectories
or the long-term trajectory Triny, = {Tr1,Trp...,Trr_1},
which largely represents the personal general preference.
We first input all sub-trajectories of T'r into HiLSTM to
get the representations Tirpor, and Ty, in POI and seman-
tic level for every sub-trajectory Tr;, where i represents
the it sub-trajectory. Formally, the exact value consists of

{T1‘,,(,I'I,Trpm-2,...,Trpoili1 and {Trsgml,Trsgm,...,Trsemlfl}.
After getting the historical sub-trajectories representation
of long-term trajectory, we further integrate representation
with attention mechanism to get long-term preference. By
using the attention mechanism, we can focus on the relevant
historical trajectories selectively.

The learned representation for historical sub-trajectories
and the latest sub-trajectory, which is used to select relevant
historical sub-trajectories, are the input of attention layer.
The attention computation [16], [28] for each historical sub-
trajectory Tr; is defined as:

Sim(fri, ff’])
> Sim(Tr,, )

ai = (i=1,2,.,1—1) (19

where Sim(Tr;, Tr;) = Tr; - fr? calculates the relatedness of
the 74, trajectory Tr; and the latest current trajectory Try, and
Z;;i Sim(Tr;, Trr) is used for normalization. After obtain-
ing the attention coefficients a;, we compute the long-term
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Algorithm 1 HiLS for POI recommendation

Algorithm 2 Training algorithm for HiLS

Input: POI trajectory: {Tr;‘oll, Tr,5, -
{Trserm rsema }
Output: Top-k POIs for each user

} ; Semantic trajectory:

1: Divide the trajectories into training set and testing set
2: Train the model # by Algorithm 2 with training set

3: while u € {uy,u2,...} do

4:  while each p in testing set do

5: Calculate category score by Eq. (23) and filter candi-
date POIs

6: Calculate POI score by Eq. (22) and recommend top-
k POlIs for user u

7: Update 6 by minimizing the objective function L

preference Prf, o @ Sum of all historical sub-trajectories, as:

I-1
E aiTri
i=1

It is noticed that, each sub-trajectory Tr; actually consists
of two-level representations Tryoi, and T¥sn,, so the long-
term preference Prfhmg also contains two levels (c.f. Fig. 6).
Formally, Prf,ong = Tryoi, Trem- After we get the personal
long-term and short-term preference, they are merged as
the final preference. We draw a weight calculation to obtain
the final preference:

PTf = Mh‘mprfshor[ D mo”gprflong

where W,y and Wj,,, are weighted matrixes for long
and short-term modeling, respectively, and they are learned
automatically without pre-specifying in the experiments.
@ is the concatenation of Wy, Prf, . and mo”gprflong'
Both Prf and Prf,,, . involve semantic and POI level

short
information, so Prf = Prf, ., Prf_, , described by Eq. (21).

poi’

Pif e = (20)

1)

4.4 POl Recommendation with HiLS

Before generating the final recommendation list, as shown
in Algorithm 1, we first filter out candidate POIs most
likely to be selected by users. Inspired by the existing
work [15], where they construct category filters to improve
recommendation, we make the best of semantic level pref-
erence to construct a semantic filter. With the semantic level
features which reflect the user intent, we further construct
the semantic filter to preliminarily filter out POIs that are in
consist with user intent before recommendation. In this way,
the semantic level features will be made better use of to help
improve the recommendation effectiveness. Specifically, we
preliminarily filter out POIs according to the check-in cate-
gory by semantic features. After getting the candidate POlIs,
we rank the scores of all POIs for the final POIs list.

The aim of HiLS is to recommend the most likely to be
visited POI by the user at the next time, and so we use a
linear transition matrix to get the final score for each POL
To build the semantic filter, we adopt the same method to
get the score for the next activity category. The calculation
probability is as follows:

Scorey,; = softmax (T, Prf

poi) (22)

Tr: Tr'2

Input: POI trajectory for training: { Foois Tpgis -+

}; Semantic
trajectory for training: {Trih, Treen, ---}
Output: Trained Model H

1: Initialize the embeddings of trajectories

2: Initialize the parameters

3: while v € {u1,u2,...} do

4:  while each Tryoi, and Trsem; do

5: Put Tryy, and Tsem; into HILSTM.
6: Get the representation for Trpmi, Trsgmi and the last
hidden states hf, , D
L
7: Get the user preference by Eq. (21)
8: Update # by minimizing the objective function L

9: Output the trained model #

Scoresey, = softmax(Tee, Prf )

(23)

where T},,; and T, are the linear transition matrices for the
final scores; Prf,; and Prf_,, are respectively the POI level
and semantic level preference for the user. Consequently, the
recommended POI is the one with the largest probability
to be visited by the user at the next step and so does the
category filter. Given the check-in records of a user, the

objective function is as follows:

M M

— Z log(Scoreyi ) — Z log(Scoresem,, )

m=1 m=1

(24)

where the objective function is organized in log likelihood,
M is the number for training samples of a user, Scorey,; and
Scoresen,, are respectively the recommendation probablhty
for POIs and categories; o controls HiLS updating with the
semantic level, and is set to 1 in our case to incorporate both
POI and semantic level updates. In practice, we use Back-
ward Propagation Through Time (BPTT) and Adam [30] to
train it. Algorithm 1 describes both the training and testing
procedures of HiLS. The raw check-ins of each user are
preprocessed into POI sub-trajectories {Tr,;, Tt ...} and
semantic sub-trajectories {Try),, Tre2,, ...}, and then divided
into training set and testing set. Algorithm 2 describes
the training algorithm for HiLS. To capture the personal
preference, we first learn features for each sub-trajectory
in POI and semantic levels meanwhile considering their
interplay by HiLSTM. Then, the short-term and long-term
preference are designed to preserve user current status and
stable preference, and the final recommendation are their
synthetical consideration.

5 PERFORMANCE EVALUATION

5.1 Experiment Setup

5.1.1 Datasets

We utilize two real-world datasets New York (NYC) and
Tokyo (TKY) collected by [19] from Foursquare to evaluate
the performance of our POI recommendation. The datasets
are widely adopted in existing works [15]-[17], [31], and
the details are described in Table 1. For each user u, we
chronologically split the check-in data into two parts, where



TABLE 1: Statistic of Datasets

Dataset #Users #POIs #Check-ins
New York 12,062 11,422 443,284
Tokyo 14,441 16,265 1,311,614

the first 70% for training, and the remaining 30% for testing.
For validation, we pick each check-in in the testing dataset
as the current POI and the next visit will be calculated by
HiLS. The next check-in in the testing dataset is regarded
as the ground truth. If one of the top-k POIs outputted by
HiLS fits the ground truth, it is then regarded as successful.

5.1.2 Baselines
We compare HiLS with the following six methods.

e DeepMove [7]. DeepMove adopts two modules for
preference learning, the current module captures
the complicated sequential information in the cur-
rent trajectory and the historical attention module
chooses the most related trajectory history as the
periodicity representation.

e PLSPL [17]. PLSPL considers personalized depen-
dencies on long- and short-term preference for dif-
ferent users and integrates different influence of lo-
cations and categories for POI recommendation.

e ST-LSTM [32]. ST-LSTM combines spatial-temporal
influence into LSTM to mitigate the problem of data
sparsity.

e LSTPM [8]. LSTPM proposes a geo-dilated LSTM
to exploit the geographical relations among non-
consecutive POls.

e STAN [33]. To learn the interaction between non-
adjacent location and non-consecutive check-ins,
STAN exploits relative spatio-temporal information
of all check-ins with self-attention layer along the
trajectories.

For all baselines, the parameter settings are initialized
the same as reported in their original works. For DeepMove,
we select historical attention module with sequential encode
module which shows best results to capture periodicity.

5.1.3 Metrics

We use two standard recommendation evaluation metrics
that are commonly adopted in existing studies [14], [15],
[34], [35], namely Recall@k (Rec@k) and NDCG@kE, to mea-
sure the performance of the next POI recommendation task.
The former computes the ratio of true positive samples in
all positive samples that the user is really interested:

1 |Ri N T
Recall@Qk = — —_
U] Z;: IT.]

(25)

where R is the set of top-k next POIs in the recommenda-

tion list for user u, Ty, is u’s actually truth set of next POI, U
is the set of users and || is the number of total users. The
latter measures the quality of top-k list:

k

rel;
NDCGak, — DEGOk 27)

IDCGQk
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where rel; is the relevance of the POI at position 4, and
k is the recommend list length, and is set k = 1, 5, 10
in our experiments. If the POI at position ¢ is the ground
truth next POI, rel; = 1; otherwise, rel; = 0. DCG@k
evaluates the accuracy of sorting without the consideration
of the recommendation list and the number of truly valid
results, and NDCGQk is normalized DCGQk. IDCGQE is the
maximum value of all possible recommendation list with
length k. Compared with Recall@k, NDCG@k considers the
position of true positive samples in top-k recommendation
list. We compute the average performance of Recall@k and
NDCG@kF as the final values.

5.1.4 Experiment Settings

In our experiments, the learning rate is set to 0.001. All the
parameters are optimized using the gradient descent opti-
mization algorithm Adam with batch size of 32. According
to check-in time, we evenly divide weekends and weekdays
respectively into 24 portions as in previous works [8], [22],
[34]. For o, we empirically set it to 1. All embedding dimen-
sions of latent vector are set the same (D; = D; = D. = D,)
for the two datasets. The hidden state and cell state are
initialized as zero. To make fair comparison, the number
of unit layer is set to 1 as in [8]. The hyper-parameters are
empirically estimated and then determined by correlated
experiments. The embedding dimension is set to 500. The
time window width and pre-defined trajectory length are
respectively At = 72h and L = 10. The category number
for constructing semantic filter is 100. All models are trained
until convergence. We implement our method and baselines
with PyTorch 1.9.1 on NVIDIA GeForce GTX 1050 Ti GPUs
and Intel(R) Core(TM) i5-8300H CPUs.

5.2 Performance on Next POl Recommendation

We first conduct experiments to evaluate the performance
of our HiLS with state-of-the-art methods, and the results
are shown in Table 2. The parameter settings are exactly
the same for HiLS and other baselines. In each column, the
optimal (resp. sub-optimal) preference is bold (resp. marked
with *). The Rec@1 and NDCG@1 have the same value,
so we only show one. From the statistics, we can observe
that the proposed HiLS achieves better performance than
all baselines in terms of every metrics on both datasets,
and LSTPM is the sub-optimal methods. As shown in Ta-
ble 2, HiLS has an improvement of 6.35% and 5.06% in
terms of Rec@5 and NDCG@5 compared to LSTPM on TKY
dataset, which demonstrates the effectiveness of HiLSTM
in our model. The improvement mainly benefits from the
effectively preference learning reflecting user intents and
geographical constrained actual check-ins.

We can also observe from Table 2 that HiLS and LSTPM
outperform DeepMove and PLSPL. The results show that
the long-term preference deriving from historical check-ins
plays an important role in capturing personal representa-
tion. DeepMove and PLSPL perform worse because when
learning long-term preference, they use all history check-ins
as a sequence. However, the amount of user historical check-
ins is pretty large, and some information may get loss when
directly learning such long sequences. We use attention
module to learn the trajectory-level long-term preference,
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TABLE 2: Performance of all the comparison methods on the two real-world datasets measured Rec@%k and NDCG@k.

NYC TKY
Rec@Ql  Rec@Q5 RecQl0 NDCGQ5 NDCGQ10 RecQl  Rec@Q5 RecQl0 NDCGQ5 NDCGQIL0
DeepMove  *0.1820  0.4033 0.4734 0.2993 0.3222 0.1266  0.2737 0.3368 0.2037 0.2241
PLSPL 0.1648  0.3522 0.4178 0.2643 0.2856 0.1397  0.3204 0.3967 0.2347 0.2594
ST-LSTM  0.1724 0.3906 0.4672 0.2877 0.3127 *0.1602  0.3435 0.4159 0.2564 0.2799
LSTPM 0.1815  *0.4232  *0.5123 *0.3082 *0.3373 0.1597  *0.3482  *0.4213 *0.2587 *0.2824
STAN 0.0871  0.2633 0.3867 0.1765 0.2216 0.0971  0.2086 0.2856 0.1602 0.1922
HiLS 0.1941 0.4348 0.5278 0.3211 0.3513 0.1626  0.3703 0.4562 0.2718 0.2996
which avoids too long sequence and preserves the periodic 07 - _ 045 - _
pattern. LSTPM also designs a nonlocal network structure — os O st &3 mis | 040 O s &3 s
. 0.35
to learn the trajectory-level long-term preference, and so  «% N | 050
Qo.

the performance is suboptimal. STAN performs worst of
all competitors, mainly because the next POI prediction
problem is highly related to the user current and recent
status. STAN does not consider the time interval of the
historical check-ins from the current position. Comparing
with ST-LSTM, which combines spatial-temporal influence
into LSTM, HiLS considers different influence of factors and
their holistic effect. Therefore, HiLS achieves better results.

5.3 Performance of HILS Variants for Ablation Study

In order to verify the effectiveness of several key parts
designed in HiLS, we further conduct ablation study by
comparing some variants of our model as follows:

e HiLS-L: This variant removes the short-term compo-
nent of HiLS and keeps only the long-term compo-
nent.

e HiLS-S: This variant removes the long-term compo-
nent of HiLS and only the short-term component is
remained.

e HiLS-N: This variant ignores the interplay between
semantic level and POI level learning in HiLSTM
module, and two completely independent LSTMs are
used instead respectively for semantic level and POI
level learning.

e HiLS-NH: This variant ignores the semantic level
and POI level learning in HILSTM module and only
one LSTM is used instead of HiLSTM, to model all
influencing factors.

5.3.1 Effect of Long- and Short-term Components

We show the performance of HiLS-L and HiLS-S in Fig. 7.
It can be observed that, HiLS-L outperforms HiLS-S. This is
because short-term preference reflects user’s current state
derived from current sub-trajectory and only reflects the
consecutiveness of current visits, while long-term preference
reflects the general taste of the user and considers the
personality. Furthermore, HiLS shows the best result, which
demonstrates the effectiveness of considering both long-
and short- term preference.

The attention mechanism is used for long-term prefer-
ence modeling. The visualization of relevance represent-
ing attention level on POI and semantic sub-trajectories is
shown in Fig. 8. It can be observed that the attention dis-
tributions of POI and semantic sub-trajectories are different.
Fig. 8(a) describes the attention at POI level, and shows that
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Fig. 7: Performance of HiLS variants for ablation study.

the 10th and 13th historical POI sub-trajectories are mostly
related to the current sub-trajectory, which indicates that the
user’s current sub-trajectory overlaps more with the POIs of
these two sub-trajectories. Compared with the attention at
POI level, the attention at the semantic level is associated
with more sub-trajectories. The 2nd, 4th and 13th historical
semantic sub-trajectories are mostly related to the current
one. Sub-trajectories not related at the POI level are likely to
be related at the semantic level. Therefore, more historical
sub-trajectories can be associated at the semantic level. With
semantic level features, recommendations can be effective
even when users check in at POlIs they never visit before.

5.3.2 Effect of Interplay of two-level Representations

A key point of our model lies in the consideration of the
interplay between POI level and semantic level representa-
tion. In this section, we examine the effectiveness of HILSTM
which considers the interplay of user intends and actual
check-ins that constrained by geographical location. The
trajectory learning process in variant HiLS-N is designed
to two parallel LSTMs. They are completely independent,
and other components in HiLS-N and HiLS are the same.
We also learn semantic trajectory in this variant, as it will be
used for the category filter.

From the results in Fig. 7, it is clear that the proposed
HiLSTM structure yields better performance than purely
parallel LSTM structure. This verifies the effectiveness of
modeling the interplay of two-level representations. Com-
paring with HiLS-N, HiLS gains performance increase of
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Fig. 8: Visualization of relevance for sub-trajectories.

5.26% and 7.90% respectively on NYC and TKY datasets on
NDCG@5. Since we consider the interplay between semantic
and POI level modeling, when user’s check-in tendency is
not obvious in POI level, we are more likely to recommend
suitable POIs to the user. For example, if a user always
checks in at p3 after consecutively at p; and ps, p3 will be
mostly recommended when he visits the same POIs with
POI level modelling. However, when the user moves to a
new place or dislikes to check in at the same POI for many
times, in this case, our proposed HiLS will perform better.

5.3.3 Effect of Each Factor on Next POl Recommendation

The next POI recommendation is influenced by multiple
factors. To investigate the contributions of each factor for
semantic level feature learning, we conduct a comparative
study for each factor. We first examine each factor for next
POI recommendation, and then input all factors including
semantic level and POI level factors into the same model for
experiments.

From the results in Fig. 9, it can be observed that category
is the main contribution for semantic level features, while
distance or timestamp alone will lead to the performance
decrease. Users have their preference after checking in at a
specific POI and the category of POI will reflect meaning
information of preference; however, purely timestamp and
geographical distance may bring some misleading informa-
tion for semantic level feature learning. HiLS combining
with timestamp, category and distance as semantic level
influencing factors brings the best results. Comparing with
the variant HiLS-N which includes only POI level features,
timestamp and distance will degrade the performance in
expectation. Furthermore, HiLS-NH shows the results of
inputting all factors into the same model with long and
short-term preference structure, but HiLS with semantic
level features and POI level feature performs better for
considering the interactions of factors that some of them
are related and some are related to their joint effects.

5.4 Evaluation on Parameter Sensitivity
5.4.1 Effect of Embedding Dimension

In this section, we show the effect of dimension size on
the performance of HiLS. The dimension of hidden units
and latent vectors are set to be the same. Usually, a larger
value suggests a stronger expression ability, though too
large values may result in over-fitting. We tune the size d
from 100 to 600 with a step of 100. The results of HiLS with
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Fig. 10: Effect of the embedding dimension size d.

different embedding dimensions regarding to Rec@k and
NDCG®@k are shown in Fig. 10. It can be observed that the
performance gradually increases with the size of embedding
dimensions increasing and converges after more than 300.
Then the performance increases slightly when d reaches 500.

5.4.2 Effect of Time Window and Sub-trajectory Length

During data preprocessing, we split historical check-ins into
multiple sub-trajectories by the time interval At and pre-
defined trajectory length L which both affects the parti-
tioning for meaningful sub-trajectories. We tune the time
window width for optimal partitioning and set the time
interval from 12h to 108h. As shown in Fig. 11, the best
results are achieved with At = 72h almost in all metrics
in NYC dataset. A very smaller time window will result in
many individual check-ins and thus leads to lots of con-
secutiveness information loss. However, the performance
deteriorates when At increases more than 72h, and the
time interval exceeds too much such that wrong transition
information is introduced. The results of the sub-trajectory
length with varying L is illustrated in Fig. 12. We can see
that the performance gets better as the length increases from
5 and then gradually gets stable when more than 10 in both
datasets. Besides, we can see an obvious drop in TKY dataset
when L > 35, which means the sub-trajectory contains too
many discontinuous check-ins.
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Fig. 12: Effect of the trajectory length L.

5.4.3 Effect of Category Number

We use the category filter to pre-filter categories first before
giving the POI recommendation. Therefore, we conduct
experiment on two datasets to examine the performance
on next category recommendation. We use the same metric
Rec@k as next POI recommendation to evaluate the effec-
tiveness. It can be seen in Fig. 13, the recall of predicted top-
k categories reach more than 90% on NYC dataset and even
97% for TKY dataset. Most POIs have been included when k
reaches 100. To ensure the effectiveness of the category filter
and avoid the loss, the number of categories for the category
filter is therefore suggested to be 100.

5.5 Performance on Raw POl Recommendation

The users always check in at new POls that have never been
visited before. To further verify the effectiveness of incorpo-
rating the interaction of influencing factors, we evaluate the
performance of HiLS for next POI recommendation in the
scenario of users currently visiting raw POls, specifically
the POIs that have never been visited before. As shown
in Fig. 14, HiLS and all variants show effectiveness as the
consecutiveness of POIs is learned by short-term modeling
and the next POIs to be recommended is likely to be ones
that has already been visited. First, we compare HiLS with
HiLS-N, the performance of HiLS is consistently better than
HiLS-N, which demonstrates the effectiveness of semantic
level features for next visit prediction. Then we compare
HiLS with HiLS-NH which inputs all factors into the same
model, we can see that the performance of HiLS is better
than HiLS-NH, as considering the correlation and interac-
tion of factors will help preserve more useful information.
Compared with HiLS-N, which considers only one key
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Fig. 14: Performance of next new POI recommendation.

factor, directly inputting all factors into the same model in
HiLS-NH will even deteriorate the performance. Obviously,
it is necessary to consider the different influence of factors
and their holistic effect to improve the performance.

6 RELATED WORK
6.1 Next POl Recommendation

Next POI recommendation is highly related to the sequen-
tial pattern of users. Early works [36], [37] on sequential
recommendation usually model the sequential influence
by Markov chain. For example, Cheng et al. [36] exploit
the personalized Markov chain in the check-in trajectory.
FPMC [37] predicts the next action based on personalized
transition graphs over underlying Markov chains.

RNN and its variants like LSTM have achieved great
success to deal with sequential data, so they are more
widely used to characterize the sequential feature of tra-
jectories recently. To incorporate more influential factors,
existing studies use different methods to consider them.
ST-RNN [38] incorporates temporal and spatial contexts
with time-specific matrices in RNN. STGN [39] introduces
two pairs of time gate and distance gate to control the
updates. ST-LSTM [32] introduces spatial-temporal relations
into LSTM and further proposes a hierarchical extension
HST-LSTM in an encoder-decoder manner. LSTPM [8] con-
siders geographical relations among recently visited POIs
by geo-dilated LSTM. ASPPA [35] can automatically identify
each semantic sub-trajectories by an attention-based stacked
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RNN. ARNN [27] seamlessly integrates RNN and attention
mechanism in a unified framework. DMAN [28] derives
dynamic memory-based attention network and recurrent at-
tention network for modeling dynamic preference. RCR [31]
designs a gated recurrent units structure to learn latent
representation. CHA [37] explores the category hierarchy
knowledge graph of POIs to learn robust representations.
Different from these studies, our model captures both
POI and semantic level features which have different im-
pacts for next POI recommendation while considering the
interplay between them. In this way, our method considers
the user intent free from geographical constrain and actual
check-in POlIs in the physical world. Therefore, we are more
likely to recommend suitable POlIs to the user when the user
check-in tendency is not that distinct in the POI level.

6.2 Long and Short-term Preference Modeling

The long-term preference reflects the general taste of users,
while the short-term behaviors reflect the recent preference
of user’s current state. Therefore, it is necessary to consider
both for next POI recommendation. DeepMove [7] adopts
two modules for preference learning: the current module
captures the complicated sequential information in the cur-
rent trajectory and the historical attention module chooses
the most related trajectory history as the periodicity repre-
sentation. HOPE [40] adapts LSTM for in out-of-town short-
term preference modeling and asymmetric-SVD for long-
term preference modeling. LSPL [16] uses attention mech-
anism to learn user long-term preference. Their extension
work [17] considers the personalized weights on different
parts for different users. LSTTM [29] builds two graphs the
global long-term graph and internal short-term graph for
online recommendation. DeepMove regards all historical
check-ins as a trajectory; however, a too long trajectory
is difficult to learn and not conducive to the expression
of trajectory. So, the recent work LSTPM [8] divides the
historical check-ins into multiple trajectories and uses non-
local network to capture the influence of each historical
trajectory on the current one.

In our method, we jointly learn user long- and short-term
preference on POI level and semantic level for preserving
multi-level check-in patterns. Besides, we learn the long-
term preference from historical sub-trajectories by attention
mechanism with the latest visited sub-trajectory which ef-
fectively selects the useful historical information.

7 CONCLUSION

In this paper, we have presented a novel framework for
long- and short-term preference learning for next POI rec-
ommendation. To consider the interplay of the POI and
semantic level features, we design a hierarchical LSTM to
guide the learning process, where the long-term preference
is learned by exploring the correlations between historical
and current trajectories with attention mechanism, while
the short-term trajectory is utilized to capture the check-in
sequential correlation with the hierarchical LSTM. Experi-
mental results on two real-world datasets demonstrate the
effectiveness and superiority of the proposed framework.
We plan to delve deeper into understanding the distinct

IEEE TRANSACTIONS ON MOBILE COMPUTING

impacts of POI and semantic levels on current visits, thereby
improving the approach to attention calculation during the
learning process of long-term preferences.
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