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Revisiting Long- and Short-Term Preference
Learning for Next POI Recommendation With
Hierarchical LSTM

Chen Wang
and Hongbo Jiang

Abstract—Point-of-interest (POI) recommendation has drawn
much attention with the widespread popularity of location-based
social networks (LBSNs). Previous works define long- and
short-term trajectories via long short-term memory (LSTM) to
capture user’s stable and current preference, and incorporate
context factors to improve recommendation effectiveness. However,
these factors have different impacts on POI recommendation, and
meanwhile, they are mutually influenced. Existing studies either
model all the factors separately, or feed them into the same LSTM
model, which are less meticulous for modeling the LBSNs trajec-
tories. To address such issues, we revisit the long- and short-term
preference learning for next POI recommendation by presenting a
novel framework that can model both POI level and semantic level
check-in trajectories. We develop a hierarchical LSTM to learn the
two-level representations and consider the interplay of the two-level
features by adding factors to the gates of LSTMs for each trajectory.
We further construct a semantic filter to improve the recommen-
dation efficacy. Experimental results using two real-world check-in
datasets indicate that the proposed framework outperforms four
state-of-the-art baselines regarding two commonly used metrics.

Index Terms—POI recommendation, location-based social
networks, hierarchical LSTM, long- and short-term preference.

1. INTRODUCTION

OWADAYS, location-based social networks (LBSNs) [1],
N [2], [3] have received much attention owing to the popu-
larity of smart mobile devices and the advancement of location
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acquisition technology. Millions of users have registered in
LBSNs services like Facebook or Foursquare. Users can post
their check-ins and share their life experience in the real-world
via LBSNs. In order to improve the experience for users, next
point-of-interest (POI) recommendation [4], [5], [6] that aims to
recommend next potentially attractive POIs to users has gained
considerable research interests, as it can benefit not only users
but also advertising agencies with an effective way to launch
advertisements.

To perform the next POI recommendation, historical check-in
trajectories, which can dynamically reflect user’s stable pref-
erence, are often adopted to capture personal general taste.
Meanwhile, people make their next visits based on their current
locations to a great extent. Therefore, previous works define
short-term and long-term check-in trajectories to capture user’s
current and stable preference, where long short-term memory
(LSTM) is usually accompanied by the long- and short-term
trajectory modeling [7], [8], [9], [10], [11], [12], [13].

However, modeling the check-in trajectory is challenging for
data with heterogeneity and sparsity. To improve the recom-
mendation effectiveness, many efforts [9], [10], [11], [12], [13]
focus on incorporating context information like spatio-temporal
contextual knowledge for POI recommendation and have gained
promising results. Specifically, some studies argue that context
factors (e.g., category, check-in time, geographical location) are
useful for next POI recommendation and they input all factors
into the same LSTM model. Recent studies [14], [15], [16],
[17], [18] take a more fine-grained approach to deal with these
factors and they explore the impact of each specific factor, and
different impacts of different factors have been demonstrated on
POI recommendation [10], [17].

Nevertheless, these factors are also mutually influenced. We
notice that some factors are geographically relevant, while some
are semantically related. To validate this point, we randomly
select a user from the real-world Foursquare NYC dataset and
figure out the check-in distribution of different POIs with the
same category that the user visits the most. Fig. 1 shows the
check-in distribution of the same user at two coffee shops/bars.
It can be observed that the check-in distribution for two coffee
shops are similar, so for the bars. User prefers visiting coffee
shops late at night and visiting bars at noon and night with no
regard to physical positions. This indicates that the user may like
visiting different POIs with the same category at a similar time
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Fig. 1. Check-in time distribution on coffee shops/bars #1 and #2, which show

a similar pattern, while the check-in distribution of the coffee shop is different
from that of the bar, indicating that the user may like visiting different POIs with
the same category at similar time slot.

slot. We thus call the specific POIs geographically relevant while
the category and check-in time semantically relevant. They have
the holistic effect on the next visit in two levels, and respectively
reflect the geographically constrained characteristics and the
unrestricted actual user intent.

In addition, the interplay between POI level and semantic level
trajectories is non-negligible, as the next POI visit is affected
by the semantic level intent and the intent is constrained by
the geographical position, and meanwhile the semantic level
features also have an impact on POI level learning. For example,
a user may prefer a bar after shopping on weekends; he may
not change the preference even if he goes to another shopping
mall, and another bar around is the most likely to be visited next.
However, existing studies either model all the factors separately,
or feed all the factors into the same LSTM model and they are
obviously not that meticulous for modeling LBSNs trajectories.

Against this background, in this paper, we revisit the long-
and short-term preference learning for next POI recommenda-
tion by presenting a novel Hierarchical LSTM with Long- and
Short-term preference framework (HiLS) that can model both
POI level and semantic level features. The influencing factors
are expressed as embeddings to transform the sparse feature
into dense representations that are further input into HiLS. To
consider the interplay of the POI and semantic level features,
we design a hierarchical LSTM to guide the learning process.
By feeding the semantic level features into the POI level in each
step, the POI level learning will be affected by the semantic level
features, which will be updated in turn by predicting the next
POI. We make the best of semantic level preference to predict
the user’s next location. With the semantic level features, which
reflect the user intent, we further construct a semantic filter to
preliminarily filter out POIs that are in consist with user intent
before recommendation. In this way, the semantic level features
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TABLE I
STATISTIC OF DATASETS

Dataset #Users #POIs #Check-ins
New York 12,062 11,422 443,284
Tokyo 14,441 16,265 1,311,614

will be made better use of to help improve the effectiveness of
the final recommendation.

Our major contributions are summarized as follows:

® We propose a novel framework which can learn the long-
and short-term preference for more effective next POI
recommendation.

® We design a hierarchical LSTM, coined as HiLSTM, to
learn both the semantic level and POI level representations
for trajectories, and model the interplay of the two levels
by feeding the semantic factor into LSTM gates.

® We utilize the short-term trajectory to capture the check-
in sequential correlation with the hierarchical LSTM, and
learn the long-term preference by exploring the correlation
between historical and current trajectories with attention
mechanism.

® We conduct extensive experiments to evaluate the perfor-
mance of HiL.S on two real-world datasets. The results
show the effectiveness and superiority of HiLS by com-
paring with state-of-the-art baselines. The code of HiLS
has been released for reproducibility purposes.!

II. PRELIMINARY

A. Empirical Data Analysis

We first conduct an empirical data analysis to reveal the
influence of factors on user mobility, using two datasets collected
by [19] from Foursquare between Apr. 2012 and Jan. 2014.
The detailed statistics of the datasets are shown in Table I.
Different from recommendation on the web, POI recommen-
dation is related to the physical location and the check-ins are
determined by a variety of influencing factors. We therefore
preliminarily analyze the impact of POI, category, timestamp
and geographical distance on the next visit.

POl influence: We analyze the check-in pattern on POIs from
two perspectives. First, we analyze the ratio of new POISs in all
collected records for each user. As shown in Fig. 2(a), in NYC
dataset, for 50% users, nearly half of the POIs are the first visits;
similar trend can be observed in TKY dataset as in Fig. 2(c).
This may be because users are enthusiastic in new POIs or they
are bored with reporting recurring visits. So, it reminds us to
consider the fact that users may frequently check in at unvisited
POIs. Second, we analyze the probability of checking in at the
same POIs. As shown in Fig. 2(b) and (d), users are likely to
check in following the similar pattern and will check in next at
the same POI previously visited.

Category influence: We analyze the category influence in the
same way as POI influence. We can see from Fig. 2(a), for 50%

Thttps://www.dropbox.com/s/q0ggpirmgOkbtdp/HiLS-Code.zip?dI=0
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Fig.3. Top-10check-in categories distribution after checking-in on restaurant.

users, less than 30% categories are the first visit while nearly half
for POIs. Even if recurring visits are omitted, the data shows that
users visit new locations with familiar categories and they are
enthusiastic enough to report them. Users may not check in at
the same POI frequently. However, the ratio of new check-in
categories is much less than that of POIs. We can see a more
obvious tendency in TKY dataset as in Fig. 2(c). Besides, as
shown in Fig. 2(b) and (d), the ratio of checking in next at
the same category previously visited is more than at the same
POI. The categories reflect more intrinsic preference, and it is
essential to learn the check-in intent other than certain POlIs.

Timestamp influence: Fig. 3 visualizes the check-in probabil-
ity on next POIs at different timestamps on NYC dataset. We
can observe that users are most likely to check in at cafes, malls
and restaurants after checking in at a restaurant for lunch, while
they are more likely to check in at cafes, home and restaurants
after dinner. Besides, the check-in categories after lunch are
more dispersive, which may because people have more plentiful
activities in the afternoon than in the evening, and thus it makes
more sense to recommend a mall than a restaurant after lunch.
Apparently, people have different next check-in preference at
different time even at the same POL
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Geographical distance influence: Geographical influence is
an important factor that distinguishes the recommendation in
LBSNs from other scenarios, as the next check-in location is
constrained by the distance from one’s current position. Fig. 4
shows the distribution of the standard deviation between con-
secutive check-ins of sub-trajectories on NYC dataset. We can
observe that most of sub-trajectories have standard deviation less
than 7.5 km. The observation supports that geographical distance
between consecutive visits in a sub-trajectory is restricted.

B. Motivation of Hierarchical LSTM

LSTM [20] is measurable as the basic unit in modeling the
specific continuous order of the POIs resulting from a certain
chronological order between user activities. It is an optimized
variant of the famous recurrent neural network (RNN) [21], and
is able to avoid the vanishing gradient problem by introducing
the gate mechanism. The basic LSTM consists of one cell state
and three gates to control the output and update of LSTM cell.
Based on the previous cell state and the input, LSTM first updates
cell states with part to keep and part to forget, and then generates
the output from the current cell for the next cell.

The basic update equations of LSTM as follows [20]:

it = 0c(Wipzi + Winhy 1 +by) )
fi=0W e + Wirhi_1 + by) @)
o = (Wi + Wophi 1 +b,) &)
¢ = tanh(W o,y + Wephye 1 + be) “)
c=fiOc 1+ 06 ®)
h; = 0; ® tanh(¢;), (6)

where %;, f;, o, represent the input, forget and output gates,
respectively, ¢, is the cell activation vector representing cell
state, x+, hy and h;_; represent the input feature, hidden output
vector and the last output of cell unit, respectively, and © is
the operation of element-wise multiplication. Each LSTM cell
computes h; which incorporates the current information and the
information before time ¢. There is also a learnable weight W
to control the update.

LSTM has achieved remarkable success in sequential predic-
tion [23], and has been recently introduced for next POI rec-
ommendation [7], [17], [22]. A usual practice is to input all the
influential factors into one LSTM model [7], [22] (c.f. Fig. 5(a)),
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while ignoring different impacts of different factors. The recent
study [17] takes a more fine-grained approach and explores
the impact of different factors separately before concatenating
their results (c.f. Fig. 5(b)). We notice that different factors are
also correlated with each other and it is not appropriate to use
separated models to learn the inherent mutual influence. We
thus propose a hierarchical LSTM structure to learn the user
preference on semantic level and POI level while considering
their interplay by feeding the semantic features in each step to
the gates of POI level LSTM to guide the learning process.

III. PROBLEM FORMULATION

Before we formulate the problem, we first present some
notations and definitions. Formally, let the quadri-tuple v =
(t,d,c,p) denotes a check-in record of a user, which indicates
that the user visits POI p at timestamp ¢, with the category of p as
¢, and d is the geographical distance between the last and current
POIs. Since user’s movements are periodic, directly using all the
historical check-ins will result in an undesirably long trajectory.
Therefore, enlightened by the existing work [24], [25], [26],
given the raw check-ins Tr = {vy, va, ...} of the user, we split
it into multiple sub-trajectories Tr = {Try, Trs...,Tr;} by
the time interval and check-in consecutiveness, as in recent
works [8], [11], [27], [28], where [ is the number of sub-
trajectories.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

As is known that the user activity for visiting POIs is influ-
enced by both the general taste and the status at present, so long-
and short-term trajectories are adopted to respectively capture
user’s stable and current preference [7], [8], [16], [17], [22],
[29]. Their formal definitions are described as follows:

Definition 1 (Long / Short-Term Trajectory [8]): The long-
term trajectory is a sequence of historical sub-trajectories,
which is denoted as Triong = {Tr1,Trs...,TT;_1}, while
the short-term trajectory is the user’s most recently visited
sub-trajectory, i.e., TTsport = {T'rr}.

The long-term trajectory is regarded as the general check-in
pattern of the user and can be used to mine the stable tastes,
and the short-term trajectory indicates the consecutiveness in-
fluenced by the recently visited POIs.

Besides the long- and short-term preference of the user,
different influential factors (e.g., category, check-in time, ge-
ographical location) also have impacts on the next POI recom-
mendation [10], [14], [16], [17], as discussed in the previous
section. While these factors are normally treated as unitary
features, we are keenly aware of the disparity on their influence.
In particular, POIs are geographically relevant, which mainly
describe the user’s geographical constrained preference, while
others are semantically relevant and can reflect more on the
user’s intentional preference free from geographical constrains.
We thus define the POI level and semantic level trajectories
separately, on the basis of the sub-trajectory, to capture such
preference.

Definition 2 (POI Trajectory): The POI trajectory of a user
is built on time-ordered sequence of L POIs in check-ins, i.e.,
T7p0i = {PvysPvss - - -, Puy, }» Where L is the length of the sub-
trajectory.

Definition 3 (Semantic Trajectory): A user’s semantic tra-
jectory is composed of a semantic sequence beyond the ge-
ographical positions in check-ins, which can be described as
Trsem = {(toy, doys o), (toy s dup €0 ) -

Formally, given a user v at time ¢,,, , with her current position
Dv, , and her historical check-in trajectory 7', our aim is to
recommend top-k POIs Prc. = {pl..,p%ecs - - - DF. € P} (P
is the set of all POIs in the LBSNs), such that P,.. is most
likely to be visited by the user at the next timestamp ¢,,. In
order to achieve this goal, we first learn user’s geographically
constrained preference and intentional preference as well as
the interplay between them from POI trajectory T'r,,; and
semantic trajectory 1'r g, , respectively, for each sub-trajectory.
Thereafter, we consider the long- and short-term preference
by modeling the long- and short-term trajectories 17,4, and
T'rshort, dependent upon the learned POI and semantic features,
before performing the final POI recommendation.

IV. HILS DESIGN
A. Overview of HIiLS

HiLS aims to learn the long- and short-term preference from
user’s POI and semantic level trajectories for next POI recom-
mendation. To this end, HiLS mainly involves the following
three steps (c.f. Fig. 6):
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sub-trajectories.

(1) Trajectory modeling with hierarchical LSTM: For each
user, we split the check-in records into multiple sub-trajectories.
Each influential factor of the check-in record is embedded into
a low-dimensional space, which retains the sequential relations
among factors. The check-in embedding, or the concatenation
of factors embedding, is then fed into a hierarchical LSTM
(HiLSTM) model for learning the sub-trajectory representation
and the hidden state of the latest check-in in both POI and
semantic levels. The structure of HILSTM is shown in the right
part of Fig. 6.

(2) Long- and short-term preference learning: As shown in
the bottom left of Fig. 6, given the learned POI and semantic
representations, we next learn the long- and short-term pref-
erence from POI and semantic levels to preserve the general
taste and the status at present. To thoroughly learn the long-term
preference, we explore the correlations between historical and
current trajectories with attention mechanism. Meanwhile, we
utilize the short-term trajectory to capture the check-in sequen-
tial correlation with HILSTM.

(3) Next POI recommendation: We get semantic and POl level
preference for each user by comprehensively considering the
long-term and short-term trajectories in two levels. Then, as
shown in the upper left of Fig. 6, the semantic level preference
is used for constructing the semantic filter. With the semantic
filter, we are able to recommend POIs with suitable categories,
even if the user checks in at POIs that have never been visited,
and thus improving the recommendation effectiveness. The POI
level preference will generate the final recommendation.

B. Trajectory Modeling With Hierarchical LSTM

As stated before, POI and semantic level features respectively
reflect actual check-in POIs and the user intent, and they have
different impacts for the next POI recommendation. Meanwhile,

Overall framework of HiLS. Short-term preference is learned from the current sub-trajectory and long-term preference is learned from historical

the interplay between POI and semantic trajectories is also
significant as the next POI visit is affected by the semantic
level intent subject to the actual geographical constraint. So,
the first step of HiLS is to learn user preference in POI level and
semantic level while considering their interplay. To this end, we
design the HILSTM to learn the features from POI and semantic
trajectories.

1) Semantic Trajectory Modeling: The semantic trajectory
modeling takes the embedding of semantic trajectory T'r 4, as
input. The influential factors in semantic trajectory are insepa-
rable as they jointly reflect the user’s intentional preference. We
use LSTM to capture the complicated sequential correlations or
long-range dependencies contained in the sub-trajectory. In the
hidden layer, each hidden vector hj, is updated after receiving

the current input &y and the last cell state h;, . In LSTM, we
have updates as follows:
:B;Sjt = [etaedveC}v 1 Sté L (7)
h;, = LSTM(z; ,h; ), h, =0, )

where LSTM(+) denotes one step pass of vector via LSTM;
e, eq, e, respectively represent the embeddings of time slot
t, geographical distance between the current and last POI d,
and the category c. [-] denotes the concatenation operation of
embeddings (reflected by & in Fig. 6), and the concatenation
result x;, is fed for semantic trajectory modeling. hy, is the
latest hidden state. The embeddings of influencing factors are
randomly initialized and will be trained in the network. The rep-
resentation learned from the semantic trajectory reflects general
intentional preference.

2) POI Trajectory Modeling: To model POI level trajectory,
we input the embedding of POI trajectory 1'r),; into HILSTM.
The interplay between POI level and semantic level trajectories
is significant as the next POI visit is affected by the semantic

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 08,2024 at 01:13:25 UTC from IEEE Xplore. Restrictions apply.
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level intent, so the key point is how to incorporate semantic intent
in every update step. To tackle this issue, we input the features
of semantic level hidden states which reflect the user intent at
the moment in each step into POI level learning. By doing so,
we can model the geographical related POI trajectories while
considering the impact of user intent. As shown in the right
part of Fig. 6, the update unit for POI trajectory modeling in
HiLSTM is named SLSTM, which introduces user intent into
POl trajectories modeling. Formally, we propose to add semantic
factors into gates of LSTM and the update equations for SLSTM
are as follows:

Ty, = (Wm:c  + Wmhvf Lt WiSF(hf,f 1) +b;) O

f“tfa(Wme +thhvt1+Wf5F( v 1)+bf)
(10)

0y, = 0o(Wopxh +Wohl)  + W, F(h;, )+b,),
(11)

where hj,  is feature representing user intent of previous state,
! is the current input embedding of the POI trajectory, hl |
is the previous cell output hidden unit, W is the weight matrix,
b is the bias term, and F'(.) is a function for semantic factor on
POI level modeling defined as

F(h; )=

Vt-1

T:h;

Vi-1?

12)

where T's is the linear transition matrix with respect to the
semantic factors.
For POI trajectory modeling, we have updates as

1<t<L
h? =0,

13)
(14)

:135 = [ep}v

h%, = SLSTM(z%, , ki, |,

e, 1)
where SLSTM(+) denotes one step pass of vector in the POI
trajectory, e, represents the low-dimensional embedding of POI,
and hl is the latest hidden state of the current POI trajectory.
The learned features for POI trajectories reflect the user’s geo-
graphical related check-in preference.

HiLSM consists of LSTM for semantic trajectory modeling
and SLSTM for POl trajectory modeling, and meanwhile consid-
ering their interplay. The status of HILSTM at a specific step can
be represented by the hidden states hY) , hy, of cell. Considering
all check-ins in a sub-trajectory, the representations for POI and
semantic trajectories are respectively defined as

Z hv, 5 jﬁ“sem = Z huf 5

where hf and hj, are the hidden state of each step in sub-

Trpo; = (15)

trajectories for POI level and semantic level features; f;'pm- and
ﬂsem are the representations for POI and semantic trajectories,
respectively.

Overall, the whole process to learn both semantic and POI
level features while considering their interplay by HILSTM for
each sub-trajectory is

ﬁpoiy ﬂsema h;

s hE = HILSTM(T7Fsern, Tpoi), (16)
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where HILSTM(-) denotes the learning for a sub-trajectory in
two levels. Note that the output of HILSTM includes represen-
tations for both the latest status and the sub-trajectory.

C. Long and Short-Term Preference Modeling

After we obtained the POI and semantic representations, we
next learn the long- and short-term preference from POI and
semantic levels to preserve the general taste and the status at
present (c.f. Fig. 6). We learn the long-term preference from the
long-term trajectory with specially designed attention mecha-
nism [7], [8], [17]. Meanwhile, we utilize the short-term trajec-
tory to capture the short-term preference reflecting sequential
correlation. HILSTM learns POI and semantic levels features
for each sub-trajectory, and thus different from existing efforts,
we learn long and short-term preference in these two levels.

1) Short-Term Preference Modeling: Given multiple sub-
trajectories Tr = {Try,Tro...,Tr;} of a user, the latest
check-in sub-trajectory T'r s, = {T'r} is taken for learning
the short-term preference. The hidden states of LSTM in each
step encode the status at the moment of the mobility, and so
we regard the latest hidden state as the short-term preference
for next mobility prediction. Specifically, for short-term prefer-
ence modeling, we get the latest semantic level and POI level
hidden states h, and hf7, of the current sub-trajectory with
HiLSTM as the short term preference in both levels. Besides,
we also get the trajectory representation Trpol and Trsem by
(15) in these two levels. The trajectory representations are used
for the attention layer in latter long-term preference modeling.
Formally, we input T'7r g0, into the HILSTM and the learned
short-term preference for current status as follows:

Prfnor = ?vahZ[)UL (17)
ﬂ[ - ﬂpoil ) T",sen” ’ (18)

where Prf,, .. represents the short-term preference in POI
level and semantic level, and Tr 7 represents the trajectory
representation of the latest trajectories in two levels.

2) Long-Term Preference Modeling: The long-term prefer-
ence modeling intends to mine the periodic trends captured
from historical sub-trajectories or the long-term trajectory
Triong = {Tr1,Try...,Trr_1}, whichlargely represents the
personal general preference. We first input all sub-trajectories
of T'r into HiLSTM to get the representations T'r,.;, and
ﬁsemi in POI and semantic level for every sub-trajectory
ﬁ“i, where ¢ represents the ¢;;, sub-trajectory. Formally, the
exact value consists of {Trpml,Trme,...,ﬂpoiH} and

{Tngeml , Trgemz, .. Trsemhl} After getting the historical
sub-trajectories representation of long-term trajectory, we fur-
ther integrate representation with attention mechanism to get
long-term preference. By using the attention mechanism, we
can focus on the relevant historical trajectories selectively.

The learned representation for historical sub-trajectories and
the latest sub-trajectory, which is used to select relevant histori-
cal sub-trajectories, are the input of attention layer. The attention
computation [16], [28] for each historical sub-trajectory T'r; is
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Algorithm 1: HiLS for POI Recommendation. Algorithm 2: Training Algorithm for HiLS.
Input: POI trajectory: {T'r,, T'r,;, .. .}; Semantic Input: POI trajectory for training: {T'r},, T2, ... };
trajectory: {T'ry,,, Tri2, . ... Semantic trajectory for training: {Tr¢L  Tre2 ...}

Output: Top-k POIs for each user
1: Divide the trajectories into training set and testing set
2:  Train the model H by Algorithm 2 with training set
3: while u € {ui,us,...} do
4 while each p in testing set do
5 Calculate category score by (23) and filter

candidate POIs

6: Calculate POI score by (22) and recommend top-k
POIs for user u

7 Update # by minimizing the objective function L

defined as
Sim(ﬁ‘i, ﬁl)
S2iZ) Sim(Tr;, Try)

(i=1,2,...,1—1), (19

a; =

where Sim(ﬁ"i, Tr 1) = ’_i”vrz . ’_i’vr? calculates the relatedness
of the 4y, trajectory T'r; and the latest current trajectory T'ry,
and Z]I;i Sim(ﬂj, Tr 1) is used for normalization. After
obtaining the attention coefficients a;, we compute the long-term
preference Pr f,,,, a sum of all historical sub-trajectories, as

I-1
Plr.flong = Z (ZZ‘T’I"i. (20)

i=1

It is noticed that, each sub-trajectory T'r; actually consists

of two-level representations T'r;,,;, and T'T serr,,, 0 the long-
term preference Pr f,,, also contains two levels (c.f. Fig. 6).
Formally, Pr f,,,, g = ﬁpoi, Trsem. After we get the personal
long-term and short-term preference, they are merged as the final
preference. We draw a weight calculation to obtain the final
preference

Prf = WShOT’tPTfshort @ WlongPrflong, (21)

where W04 and Wy,,, are weighted matrixes for long
and short-term modeling, respectively, and they are learned
automatically without pre-specifying in the experiments. @ is
the concatenation of W g0, P f p0r¢ and Wigp o Pr flong.
Both Prf;,,, and Prf,,,  involve semantic and POI level
information, so Prf = Prf,,, Prf..,. described by (21).

D. POI Recommendation With HiLS

Before generating the final recommendation list, as shown in
Algorithm 1, we first filter out candidate POIs most likely to be
selected by users. Inspired by the existing work [15], where they
construct category filters to improve recommendation, we make
the best of semantic level preference to construct a semantic fil-
ter. With the semantic level features which reflect the user intent,
we further construct the semantic filter to preliminarily filter out
POIs that are in consist with user intent before recommendation.
In this way, the semantic level features will be made better use
of to help improve the recommendation effectiveness. Specifi-
cally, we preliminarily filter out POIs according to the check-in

Output: Trained Model H

1: Initialize the embeddings of trajectories

2: Initialize the parameters

3: whileu € {u;,us,...} do

4: while each T'r,,;, and T'r s, do

5: Put T'r},,;, and T'r ¢, into HILSTM.
6

Get the representation for T'rp;, , fi"vrsem and the
last hidden states h$, , h7,
Get the user preference by (21)

Update ¢ by minimizing the objective function L

9:  Output the trained model H

category by semantic features. After getting the candidate POIs,
we rank the scores of all POIs for the final POIs list.

The aim of HiLS is to recommend the most likely to be visited
POI by the user at the next time, and so we use a linear transition
matrix to get the final score for each POI. To build the semantic
filter, we adopt the same method to get the score for the next
activity category. The calculation probability is as follows:

(22)
(23)

Scorepe; = softmax (Tpoi PT f ;)
Scoresem = softmax (Tsem Prf o) s

where T',,,; and T',.,,, are the linear transition matrices for the
final scores; Pr f,,; and Pr f ., are respectively the POl level
and semantic level preference for the user. Consequently, the
recommended POI is the one with the largest probability to be
visited by the user at the next step and so does the category filter.
Given the check-in records of a user, the objective function is as
follows:

M M
L=- Z log (S’corepm-m) -« Z log (Scoresem,, )
m=1 m=1

(24)
where the objective function is organized in log likelihood, M
is the number for training samples of a user, Score,,;  and
Scoregenm,, arerespectively the recommendation probability for
POIs and categories; o controls HiLS updating with the semantic
level, and is set to 1 in our case to incorporate both POI and se-
mantic level updates. In practice, we use Backward Propagation
Through Time (BPTT) and Adam [30] to train it. Algorithm 1
describes both the training and testing procedures of HiLS.
The raw check-ins of each user are preprocessed into POI sub-
trajectories {T'r,};, Tr,2;,...} and semantic sub-trajectories
{Tre,  Tre ...}, and then divided into training set and
testing set. Algorithm 2 describes the training algorithm for
HiLS. To capture the personal preference, we first learn features
for each sub-trajectory in POI and semantic levels meanwhile
considering their interplay by HiLSTM. Then, the short-term
and long-term preference are designed to preserve user current
status and stable preference, and the final recommendation are
their synthetical consideration.
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V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Datasets: We utilize two real-world datasets New York
(NYC) and Tokyo (TKY) collected by [19] from Foursquare
to evaluate the performance of our POI recommendation. The
datasets are widely adopted in existing works [15], [16], [17],
[31], and the details are described in Table I. For each user u, we
chronologically split the check-in data into two parts, where the
first 70% for training, and the remaining 30% for testing. For
validation, we pick each check-in in the testing dataset as the
current POI and the next visit will be calculated by HiLS. The
next check-in in the testing dataset is regarded as the ground
truth. If one of the top-%k POIs outputted by HiLS fits the ground
truth, it is then regarded as successful.

2) Baselines: We compare HiLS with the following six
methods.

e DeepMove [7]. DeepMove adopts two modules for prefer-
ence learning, the current module captures the complicated
sequential information in the current trajectory and the his-
torical attention module chooses the most related trajectory
history as the periodicity representation.

e PLSPL [17]. PLSPL considers personalized dependencies
on long- and short-term preference for different users and
integrates different influence of locations and categories
for POI recommendation.

e ST-LSTM [32]. ST-LSTM combines spatial-temporal influ-
ence into LSTM to mitigate the problem of data sparsity.

e [STPM [8]. LSTPM proposes a geo-dilated LSTM to
exploit the geographical relations among non-consecutive
POIs.

e STAN [33]. To learn the interaction between non-adjacent
location and non-consecutive check-ins, STAN exploits
relative spatio-temporal information of all check-ins with
self-attention layer along the trajectories.

For all baselines, the parameter settings are initialized the
same as reported in their original works. For DeepMove, we
select historical attention module with sequential encode module
which shows best results to capture periodicity.

3) Metrics: We use two standard recommendation evalua-
tion metrics that are commonly adopted in existing studies [14],
[15], [34], [35], namely Recall@Fk (Rec@k) and NDCG@FE;, to
measure the performance of the next POI recommendation task.
The former computes the ratio of true positive samples in all
positive samples that the user is really interested:

|Ry N T

, 25
] (25)

RecallQk =
\UI Z

where R is the set of top-k next POIs in the recommendation
list for user u, Ty, is u’s actually truth set of next POI, ¢/ is the set
of users and |U/| is the number of total users. The latter measures
the quality of top-£ list

rel;
DCGQk = rely + Z W

+1) 26)
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DCGQk
IDCGak’

where rel; is the relevance of the POI at position ¢, and k
is the recommend list length, and is set £ = 1, 5, 10 in our
experiments. If the POI at position ¢ is the ground truth next POI,
rel; = 1; otherwise, rel; = 0. DCG@Xk evaluates the accuracy
of sorting without the consideration of the recommendation
list and the number of truly valid results, and N DCGQE is
normalized DCGQk. I DCGQE is the maximum value of all
possible recommendation list with length k. Compared with
Recall@k, NDCG@k considers the position of true positive
samples in top-k recommendation list. We compute the average
performance of Recall@k and NDCG@F as the final values.
4) Experiment Settings: In our experiments, the learning rate
is set to 0.001. All the parameters are optimized using the
gradient descent optimization algorithm Adam with batch size of
32. According to check-in time, we evenly divide weekends and
weekdays respectively into 24 portions as in previous works [8],
[22], [34]. For «, we empirically set it to 1. All embedding
dimensions of latent vector are set the same (D; = Dy = D, =
D,) for the two datasets. The hidden state and cell state are
initialized as zero. To make fair comparison, the number of unit
layer is set to 1 as in [8]. The hyper-parameters are empirically
estimated and then determined by correlated experiments. The
embedding dimension is set to 500. The time window width
and pre-defined trajectory length are respectively At = 72 hand
L = 10. The category number for constructing semantic filter is
100. All models are trained until convergence. We implement our
method and baselines with PyTorch 1.9.1 on NVIDIA GeForce
GTX 1050 Ti GPUs and Intel(R) Core(TM) i5-8300H CPUs.

NDCGQk = 27)

B. Performance on Next POI Recommendation

We first conduct experiments to evaluate the performance
of our HiLS with state-of-the-art methods, and the results are
shown in Table II. The parameter settings are exactly the same
for HiLS and other baselines. In each column, the optimal
(resp. sub-optimal) preference is bold (resp. marked with ).
The Rec@1 and NDCG@1 have the same value, so we only
show one. From the statistics, we can observe that the proposed
HiLS achieves better performance than all baselines in terms of
every metrics on both datasets, and LSTPM is the sub-optimal
methods. As shown in Table II, HiLS has an improvement of
6.35% and 5.06% in terms of Rec@5 and NDCG @5 compared to
LSTPM on TKY dataset, which demonstrates the effectiveness
of HILSTM in our model. The improvement mainly benefits
from the effectively preference learning reflecting user intents
and geographical constrained actual check-ins.

We can also observe from Table II that HiLS and LSTPM
outperform DeepMove and PLSPL. The results show that the
long-term preference deriving from historical check-ins plays an
important role in capturing personal representation. DeepMove
and PLSPL perform worse because when learning long-term
preference, they use all history check-ins as a sequence. How-
ever, the amount of user historical check-ins is pretty large, and
some information may get loss when directly learning such long
sequences. We use attention module to learn the trajectory-level
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TABLE II
PERFORMANCE OF ALL THE COMPARISON METHODS ON THE TWO REAL-WORLD DATASETS MEASURED REC@k AND NDCG @k

NYC TKY
Rec@l  Rec@5 Rec@l0 NDCGQ5 NDCGQ10 Rec@Ql  Rec@5 Rec@Ql0 NDCGQ5 NDCGQ10
DeepMove  *0.1820  0.4033 0.4734 0.2993 0.3222 0.1266 0.2737 0.3368 0.2037 0.2241
PLSPL 0.1648 0.3522 0.4178 0.2643 0.2856 0.1397  0.3204 0.3967 0.2347 0.2594
ST-LSTM  0.1724  0.3906 0.4672 0.2877 0.3127 *0.1602  0.3435 0.4159 0.2564 0.2799
LSTPM 0.1815  *0.4232  *0.5123 *0.3082 *0.3373 0.1597  *0.3482  *0.4213 *0.2587 *0.2824
STAN 0.0871 0.2633 0.3867 0.1765 0.2216 0.0971 0.2086 0.2856 0.1602 0.1922
HiLS 0.1941 0.4348 0.5278 0.3211 0.3513 0.1626 0.3703 0.4562 0.2718 0.2996
long-term preference, which avoids too long sequence and pre- 07 ——— 22(5) —
serves the periodic pattern. LSTPM also designs a nonlocal net- 06 el PR 035 R
0
work structure to learn the trajectory-level long-term preference, So3o
. . Q
and so the performance is suboptimal. STAN performs worst of 2 g;z

all competitors, mainly because the next POI prediction problem
is highly related to the user current and recent status. STAN does
not consider the time interval of the historical check-ins from the
current position. Comparing with ST-LSTM, which combines
spatial-temporal influence into LSTM, HiLS considers different
influence of factors and their holistic effect. Therefore, HiLS
achieves better results.

C. Performance of HiLS Variants for Ablation Study

In order to verify the effectiveness of several key parts de-
signed in HiLS, we further conduct ablation study by comparing
some variants of our model as follows:
® HiLS-L: This variant removes the short-term component of
HiLS and keeps only the long-term component.

e HiLS-S: This variant removes the long-term component of
HiLS and only the short-term component is remained.

® HiLS-N: This variant ignores the interplay between se-
mantic level and POI level learning in HILSTM module,
and two completely independent LSTMs are used instead
respectively for semantic level and POI level learning.

® HiLS-NH: This variant ignores the semantic level and POI

level learning in HILSTM module and only one LSTM is
used instead of HILSTM, to model all influencing factors.

1) Effect of Long- and Short-Term Components: We show
the performance of HiLS-L and HiLS-S in Fig. 7. It can be
observed that, HiLS-L outperforms HiLS-S. This is because
short-term preference reflects user’s current state derived from
current sub-trajectory and only reflects the consecutiveness of
current visits, while long-term preference reflects the general
taste of the user and considers the personality. Furthermore,
HiLS shows the best result, which demonstrates the effectiveness
of considering both long- and short- term preference.

The attention mechanism is used for long-term preference
modeling. The visualization of relevance representing attention
level on POI and semantic sub-trajectories is shown in Fig. 8.
It can be observed that the attention distributions of POI and
semantic sub-trajectories are different. Fig. 8(a) describes the
attention at POI level, and shows that the 10th and 13th histor-
ical POI sub-trajectories are mostly related to the current sub-
trajectory, which indicates that the user’s current sub-trajectory

0.15
0.10

(a) Rec@k on NYC (b) NDCG@k on NYC

0.7 0.45
B HiLS-S [ HiLS-N B HiLS-S [ HiLS-N
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- 0.5 é)OSS
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Y04 g
3 K025
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0.2 0.15
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Fig. 7. Performance of HiLS variants for ablation study.
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Fig. 8.  Visualization of relevance for sub-trajectories.

overlaps more with the POIs of these two sub-trajectories. Com-
pared with the attention at POl level, the attention at the semantic
level is associated with more sub-trajectories. The 2nd, 4th and
13th historical semantic sub-trajectories are mostly related to
the current one. Sub-trajectories not related at the POI level
are likely to be related at the semantic level. Therefore, more
historical sub-trajectories can be associated at the semantic level.
With semantic level features, recommendations can be effective
even when users check in at POIs they never visit before.

2) Effect of Interplay of Two-Level Representations: A key
point of our model lies in the consideration of the interplay
between POl level and semantic level representation. In this sec-
tion, we examine the effectiveness of HILSTM which considers
the interplay of user intends and actual check-ins that constrained
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Fig. 9. Performance of each factor.

by geographical location. The trajectory learning process in
variant HiLS-N is designed to two parallel LSTMs. They are
completely independent, and other components in HiLS-N and
HiLS are the same. We also learn semantic trajectory in this
variant, as it will be used for the category filter.

From the results in Fig. 7, it is clear that the proposed
HiLSTM structure yields better performance than purely parallel
LSTM structure. This verifies the effectiveness of modeling the
interplay of two-level representations. Comparing with HiLS-N,
HiLS gains performance increase of 5.26% and 7.90% respec-
tively on NYC and TKY datasets on NDCG@5. Since we
consider the interplay between semantic and POI level modeling,
when user’s check-in tendency is not obvious in POI level, we
are more likely to recommend suitable POIs to the user. For
example, if a user always checks in at ps after consecutively at
p1 and ps, ps will be mostly recommended when he visits the
same POIs with POI level modelling. However, when the user
moves to a new place or dislikes to check in at the same POI for
many times, in this case, our proposed HiL.S will perform better.

3) Effect of Each Factor on Next POI Recommendation: The
next POI recommendation is influenced by multiple factors. To
investigate the contributions of each factor for semantic level
feature learning, we conduct a comparative study for each factor.
We first examine each factor for next POI recommendation, and
then input all factors including semantic level and POI level
factors into the same model for experiments.

From the results in Fig. 9, it can be observed that category is
the main contribution for semantic level features, while distance
or timestamp alone will lead to the performance decrease. Users
have their preference after checking in at a specific POI and
the category of POI will reflect meaning information of pref-
erence; however, purely timestamp and geographical distance
may bring some misleading information for semantic level fea-
ture learning. HiLS combining with timestamp, category and
distance as semantic level influencing factors brings the best
results. Comparing with the variant HiLS-N which includes
only POl level features, timestamp and distance will degrade the
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Fig. 11.  Effect of the time window width A¢.

performance in expectation. Furthermore, HiLS-NH shows the
results of inputting all factors into the same model with long and
short-term preference structure, but HiLS with semantic level
features and POI level feature performs better for considering
the interactions of factors that some of them are related and some
are related to their joint effects.

D. Evaluation on Parameter Sensitivity

1) Effect of Embedding Dimension: In this section, we show
the effect of dimension size on the performance of HiLS. The
dimension of hidden units and latent vectors are set to be the
same. Usually, a larger value suggests a stronger expression
ability, though too large values may result in over-fitting. We
tune the size d from 100 to 600 with a step of 100. The results of
HiLS with different embedding dimensions regarding to Rec @k
and NDCG@FE are shown in Fig. 10. It can be observed that
the performance gradually increases with the size of embedding
dimensions increasing and converges after more than 300. Then
the performance increases slightly when d reaches 500.

2) Effect of Time Window and Sub-Trajectory Length: Dur-
ing data preprocessing, we split historical check-ins into mul-
tiple sub-trajectories by the time interval At and pre-defined
trajectory length L which both affects the partitioning for
meaningful sub-trajectories. We tune the time window width
for optimal partitioning and set the time interval from 12 h to
108 h. As shown in Fig. 11, the best results are achieved with
At = 72 h almost in all metrics in NYC dataset. A very smaller
time window will result in many individual check-ins and thus
leads to lots of consecutiveness information loss. However, the
performance deteriorates when At increases more than 72 h, and
the time interval exceeds too much such that wrong transition
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information is introduced. The results of the sub-trajectory
length with varying L is illustrated in Fig. 12. We can see
that the performance gets better as the length increases from
5 and then gradually gets stable when more than 10 in both
datasets. Besides, we can see an obvious drop in TKY dataset
when L > 35, which means the sub-trajectory contains too many
discontinuous check-ins.

3) Effect of Category Number: We use the category filter to
pre-filter categories first before giving the POI recommendation.
Therefore, we conduct experiment on two datasets to examine
the performance on next category recommendation. We use the
same metric Rec @k as next POl recommendation to evaluate the
effectiveness. It can be seen in Fig. 13, the recall of predicted
top-k categories reach more than 90% on NYC dataset and even
97% for TKY dataset. Most POIs have been included when &
reaches 100. To ensure the effectiveness of the category filter
and avoid the loss, the number of categories for the category
filter is therefore suggested to be 100.

E. Performance on Raw POI Recommendation

The users always check in at new POIs that have never
been visited before. To further verify the effectiveness of in-
corporating the interaction of influencing factors, we evaluate
the performance of HiLS for next POI recommendation in the
scenario of users currently visiting raw POlIs, specifically the
POIs that have never been visited before. As shown in Fig. 14,
HiLS and all variants show effectiveness as the consecutiveness
of POIs is learned by short-term modeling and the next POIs
to be recommended is likely to be ones that has already been
visited. First, we compare HiLS with HiL.S-N, the performance
of HiLS is consistently better than HiLS-N, which demonstrates
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Fig. 14.  Performance of next new POI recommendation.

the effectiveness of semantic level features for next visit predic-
tion. Then we compare HiLS with HILS-NH which inputs all
factors into the same model, we can see that the performance of
HiLS is better than HiLL.S-NH, as considering the correlation and
interaction of factors will help preserve more useful information.
Compared with HiLS-N, which considers only one key factor,
directly inputting all factors into the same model in HiLS-NH
will even deteriorate the performance. Obviously, it is necessary
to consider the different influence of factors and their holistic
effect to improve the performance.

VI. RELATED WORK
A. Next POI Recommendation

Next POI recommendation is highly related to the sequential
pattern of users. Early works [36], [37] on sequential recommen-
dation usually model the sequential influence by Markov chain.
For example, Cheng et al. [36] exploit the personalized Markov
chain in the check-in trajectory. FPMC [37] predicts the next
action based on personalized transition graphs over underlying
Markov chains.

RNN and its variants like LSTM have achieved great success
to deal with sequential data, so they are more widely used to
characterize the sequential feature of trajectories recently. To
incorporate more influential factors, existing studies use differ-
ent methods to consider them. ST-RNN [38] incorporates tem-
poral and spatial contexts with time-specific matrices in RNN.
STGN [39] introduces two pairs of time gate and distance gate to
control the updates. ST-LSTM [32] introduces spatial-temporal
relations into LSTM and further proposes a hierarchical exten-
sion HST-LSTM in an encoder-decoder manner. LSTPM [8]
considers geographical relations among recently visited POIs
by geo-dilated LSTM. ASPPA [35] can automatically identify
each semantic sub-trajectories by an attention-based stacked
RNN. ARNN [27] seamlessly integrates RNN and attention
mechanism in a unified framework. DMAN [28] derives dy-
namic memory-based attention network and recurrent attention
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network for modeling dynamic preference. RCR [31] designs
a gated recurrent units structure to learn latent representation.
CHA [37] explores the category hierarchy knowledge graph of
POIs to learn robust representations.

Different from these studies, our model captures both POI and
semantic level features which have different impacts for next
POI recommendation while considering the interplay between
them. In this way, our method considers the user intent free from
geographical constrain and actual check-in POIs in the physical
world. Therefore, we are more likely to recommend suitable
POIs to the user when the user check-in tendency is not that
distinct in the POI level.

B. Long and Short-Term Preference Modeling

The long-term preference reflects the general taste of users,
while the short-term behaviors reflect the recent preference of
user’s current state. Therefore, it is necessary to consider both for
next POI recommendation. DeepMove [7] adopts two modules
for preference learning: the current module captures the com-
plicated sequential information in the current trajectory and the
historical attention module chooses the most related trajectory
history as the periodicity representation. HOPE [40] adapts
LSTM for in out-of-town short-term preference modeling and
asymmetric-SVD for long-term preference modeling. LSPL [16]
uses attention mechanism to learn user long-term preference.
Their extension work [17] considers the personalized weights
on different parts for different users. LSTTM [29] builds two
graphs the global long-term graph and internal short-term graph
for online recommendation. DeepMove regards all historical
check-ins as a trajectory; however, a too long trajectory is dif-
ficult to learn and not conducive to the expression of trajectory.
So, the recent work LSTPM [8] divides the historical check-ins
into multiple trajectories and uses non-local network to capture
the influence of each historical trajectory on the current one.

In our method, we jointly learn user long- and short-term pref-
erence on POl level and semantic level for preserving multi-level
check-in patterns. Besides, we learn the long-term preference
from historical sub-trajectories by attention mechanism with the
latest visited sub-trajectory which effectively selects the useful
historical information.

VII. CONCLUSION

In this paper, we have presented a novel framework for long-
and short-term preference learning for next POI recommenda-
tion. To consider the interplay of the POI and semantic level
features, we design a hierarchical LSTM to guide the learning
process, where the long-term preference is learned by exploring
the correlations between historical and current trajectories with
attention mechanism, while the short-term trajectory is utilized
to capture the check-in sequential correlation with the hierar-
chical LSTM. Experimental results on two real-world datasets
demonstrate the effectiveness and superiority of the proposed
framework. We plan to delve deeper into understanding the
distinct impacts of POI and semantic levels on current visits,
thereby improving the approach to attention calculation during
the learning process of long-term preferences.
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